Old and new parameter choice rules for discrete ill-posed problems
نویسندگان
چکیده
منابع مشابه
Comparing parameter choice methods for regularization of ill-posed problems
In the literature on regularization, many different parameter choice methods have been proposed in both deterministic and stochastic settings. However, based on the available information, it is not always easy to know how well a particular method will perform in a given situation and how it compares to other methods. This paper reviews most of the existing parameter choice methods, and evaluate...
متن کاملRegularization parameter determination for discrete ill-posed problems
Straightforward solution of discrete ill-posed linear systems of equations or leastsquares problems with error-contaminated data does not, in general, give meaningful results, because propagated error destroys the computed solution. The problems have to be modified to reduce their sensitivity to the error in the data. The amount of modification is determined by a regularization parameter. It ca...
متن کاملParameter Identification for Nonlinear Ill-posed Problems
Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملFGMRES for linear discrete ill-posed problems
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2012
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-012-9612-8